Object-Oriented Programmin

Encapsulation

Encapsulation is an object-oriented programming concept that binds together the data and functions that manipulate the data, and that keeps both safe from outside interference and misuse. Data encapsulation led to the important OOP concept of data hiding.

Wikipedia

  • Topology

Abstraction

Abstraction is one of the key concepts of object-oriented programming (OOP) languages. Its main goal is to handle complexity by hiding unnecessary details from the user. That enables the user to implement more complex logic on top of the provided abstraction without understanding or even thinking about all the hidden complexity.

Inheritance

In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object (prototypical inheritance) or class (class-based inheritance), retaining similar implementation. In most class-based object-oriented languages, an object created through inheritance (a “child object”) acquires all the properties and behaviors of the parent object(Except: constructors, destructor, overloaded operators and friend functions of the base class). Inheritance allows programmers to create classes that are built upon existing classes,[1] to specify a new implementation while maintaining the same behaviors (realizing an interface), to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed graph.

Polymorphism

Subtyping, a form of polymorphism, is when calling code can be agnostic as to whether an object belongs to a parent class or one of its descendants. For example, a function might call “make_full_name()” on an object, which will work whether the object is of class Person or class Employee. This is another type of abstraction which simplifies code external to the class hierarchy and enables strong separation of concerns.

Wikipedia

Interface segregation principle

The interface-segregation principle (ISP) states that no client should be forced to depend on methods it does not use.[1] ISP splits interfaces that are very large into smaller and more specific ones so that clients will only have to know about the methods that are of interest to them. Such shrunken interfaces are also called role interfaces.[2] ISP is intended to keep a system decoupled and thus easier to refactor, change, and redeploy. ISP is one of the five SOLID principles of object-oriented design, similar to the High Cohesion Principle of GRASP.[3]

Wikipedia-interface-segregation

Comments

⬆︎TOP